Заголовок:
Комментарий:
Версия для копирования в MS Word
PDF-версии: горизонтальная · вертикальная · крупный шрифт · с большим полем
РЕШУ ЦТ — математика
Вариант № 54248
1.  
i

Даны си­сте­мы не­ра­венств. Ука­жи­те номер си­сте­мы не­ра­венств, ко­то­рая рав­но­силь­на си­сте­ме не­ра­венств  си­сте­ма вы­ра­же­ний x боль­ше 3,x\leqslant5. конец си­сте­мы .

1)  си­сте­ма вы­ра­же­ний x минус 2 боль­ше 1,x плюс 1\le6; конец си­сте­мы .
2)  си­сте­ма вы­ра­же­ний 2x боль­ше 3,x\le5; конец си­сте­мы .
3)  си­сте­ма вы­ра­же­ний x боль­ше 3,x плюс 2 \le3; конец си­сте­мы .
4)  си­сте­ма вы­ра­же­ний x плюс 1 боль­ше 2,x\le5; конец си­сте­мы .
5)  си­сте­ма вы­ра­же­ний x боль­ше 3, минус x\le5. конец си­сте­мы .
2.  
i

Даны квад­рат­ные урав­не­ния:

Ука­жи­те урав­не­ние, ко­то­рое не имеет кор­ней.

1) 3x в квад­ра­те плюс 6x плюс 3=0
2) 5x в квад­ра­те минус 13x плюс 20=0
3) 4x в квад­ра­те минус 16x плюс 16=0
4) 2x в квад­ра­те минус 3x минус 7=0
5) 4x в квад­ра­те минус 2x минус 5=0
3.  
i

Из точки A к окруж­но­сти с цен­тром O про­ве­де­ны две ка­са­тель­ные AB и AC, где B и C  — точки ка­са­ния. Через точки C и O про­ве­де­на пря­мая, ко­то­рая пе­ре­се­ка­ет ка­са­тель­ную AB в точке M (см. рис.). Най­ди­те гра­дус­ную меру угла 1, если ∠AMC  =  44°.

1) 30°
2) 46°
3) 22°
4) 44°
5) 23°
4.  
i

На ри­сун­ке изоб­ра­же­ны две окруж­но­сти с цен­тра­ми в точ­ках A и B. Если MK  =  18, то сумма ра­ди­у­сов этих двух окруж­но­стей равна:

1) 10
2) 6
3) 12
4) 15
5) 17
5.  
i

Ука­жи­те номер вер­но­го утвер­жде­ния, если из­вест­но, что функ­ция y=f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка воз­рас­та­ет на мно­же­стве дей­стви­тель­ных чисел и f левая круг­лая скоб­ка минус 5 пра­вая круг­лая скоб­ка =0.

1) f левая круг­лая скоб­ка 8 пра­вая круг­лая скоб­ка мень­ше 0
2) f левая круг­лая скоб­ка 5 пра­вая круг­лая скоб­ка =0
3) f левая круг­лая скоб­ка минус 7 пра­вая круг­лая скоб­ка боль­ше f левая круг­лая скоб­ка 4 пра­вая круг­лая скоб­ка
4) f левая круг­лая скоб­ка минус 9 пра­вая круг­лая скоб­ка мень­ше f левая круг­лая скоб­ка минус 3 пра­вая круг­лая скоб­ка
5) f левая круг­лая скоб­ка минус 8 пра­вая круг­лая скоб­ка боль­ше 0
6.  
i

Длины диа­го­на­лей ромба яв­ля­ют­ся кор­ня­ми урав­не­ния 0,1x2 − 1,4x + 4,2  =  0. Най­ди­те пло­щадь ромба.

1) 21
2) 14
3) 7
4) 42
5) 28
7.  
i

В пер­вый день ве­ло­си­пе­дист про­ехал 45 км, а во вто­рой день  — на 12% боль­ше, чем в пер­вый. Сколь­ко ки­ло­мет­ров про­ехал ве­ло­си­пе­дист за два дня?

1) 62,2
2) 106,2
3) 50,4
4) 102
5) 95,4
8.  
i

Най­ди­те зна­че­ние вы­ра­же­ния 220 умно­жить на дробь: чис­ли­тель: 6, зна­ме­на­тель: 7 конец дроби минус левая круг­лая скоб­ка дробь: чис­ли­тель: 6, зна­ме­на­тель: 7 конец дроби плюс дробь: чис­ли­тель: 1, зна­ме­на­тель: 10 конец дроби пра­вая круг­лая скоб­ка : дробь: чис­ли­тель: 1, зна­ме­на­тель: 220 конец дроби .

1) 0,1
2)  целая часть: 166, дроб­ная часть: чис­ли­тель: 4, зна­ме­на­тель: 7
3) −0,1
4) 22
5) −22
9.  
i

Гра­фик функ­ции, за­дан­ной фор­му­лой y  =  kx + b, сим­мет­ри­чен от­но­си­тель­но оси Oy и про­хо­дит через точку A левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби ; 2 пра­вая круг­лая скоб­ка . Зна­че­ние вы­ра­же­ния k + b равно:

1) 4
2) 1
3)  минус целая часть: 1, дроб­ная часть: чис­ли­тель: 1, зна­ме­на­тель: 2
4)  целая часть: 2, дроб­ная часть: чис­ли­тель: 1, зна­ме­на­тель: 2
5) 2
10.  
i

Упро­сти­те вы­ра­же­ние  дробь: чис­ли­тель: 27 в сте­пе­ни x плюс 9 в сте­пе­ни x минус 20 умно­жить на 3 в сте­пе­ни x , зна­ме­на­тель: 3 в сте­пе­ни x левая круг­лая скоб­ка 3 в сте­пе­ни x минус 4 пра­вая круг­лая скоб­ка конец дроби .

1) 3 в сте­пе­ни x плюс 5
2) 27 в сте­пе­ни x минус 5
3) 2 умно­жить на 3 в сте­пе­ни x
4) 3 в сте­пе­ни x
5) 3 в сте­пе­ни x минус 5
11.  
i

Пусть (x1; y1), (x2; y2)  — ре­ше­ния си­сте­мы урав­не­ний  си­сте­ма вы­ра­же­ний x в квад­ра­те плюс y в квад­ра­те =3xy плюс 1,x минус y=2. конец си­сте­мы .

Най­ди­те зна­че­ние вы­ра­же­ния x1x2 + y1y2.

12.  
i

Дана гео­мет­ри­че­ская про­грес­сия (bn), в ко­то­рой b5  =  −12, b6  =  36. Для на­ча­ла каж­до­го из пред­ло­же­ний А−В под­бе­ри­те его окон­ча­ние 1−6 так, чтобы по­лу­чи­лось вер­ное утвер­жде­ние.

На­ча­ло пред­ло­же­ния

A)  Зна­ме­на­тель этой про­грес­сии равен ...

Б)  Чет­вер­тый член этой про­грес­сии равен ...

В)  Пер­вый член этой про­грес­сии равен ...

Окон­ча­ние пред­ло­же­ния

1)  −4

2)   минус дробь: чис­ли­тель: 4, зна­ме­на­тель: 27 конец дроби

3)   минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби

4)  −3

5)  4

6)   дробь: чис­ли­тель: 4, зна­ме­на­тель: 81 конец дроби

Oтвет за­пи­ши­те в виде со­че­та­ния букв и цифр, со­блю­дая ал­фа­вит­ную по­сле­до­ва­тель­ность букв ле­во­го столб­ца. Пом­ни­те, что не­ко­то­рые дан­ные пра­во­го столб­ца могут ис­поль­зо­вать­ся не­сколь­ко раз или не ис­поль­зо­вать­ся во­об­ще. На­при­мер: А1Б1В4.

13.  
i

В пря­мо­уголь­ном тре­уголь­ни­ке ABC  левая круг­лая скоб­ка \angle ABC = 90 гра­ду­сов пра­вая круг­лая скоб­ка BH и BK  — вы­со­та и ме­ди­а­на со­от­вет­ствен­но, про­ве­ден­ные к ги­по­те­ну­зе (см. рис.). Най­ди­те пло­щадь пря­мо­уголь­но­го тре­уголь­ни­ка ABC, если BK  =  7,  синус \angle BKH = дробь: чис­ли­тель: 5, зна­ме­на­тель: 7 конец дроби .

14.  
i

На ко­ор­ди­нат­ной плос­ко­сти даны точки A(−5; 1) и D(−5; −4). Точка С сим­мет­рич­на точке А от­но­си­тель­но оси ор­ди­нат, а точка В сим­мет­рич­на точке D от­но­си­тель­но на­ча­ла ко­ор­ди­нат. Для на­ча­ла каж­до­го из пред­ло­же­ний А−В под­бе­ри­те его окон­ча­ние 1−6 так, чтобы по­лу­чи­лось вер­ное утвер­жде­ние.

 

НА­ЧА­ЛО ПРЕД­ЛО­ЖЕ­НИЯ

A)  Длина боль­шей диа­го­на­ли че­ты­рех­уголь­ни­ка ABCD равна ...

Б)  Длина наи­боль­шей сто­ро­ны че­ты­рех­уголь­ни­ка ABCD равна ...

B)  Пло­щадь че­ты­рех­уголь­ни­ка ABCD равна ...

ОКОН­ЧА­НИЕ ПРЕД­ЛО­ЖЕ­НИЯ

1)  30

2)  50

3)  5 ко­рень из: на­ча­ло ар­гу­мен­та: 5 конец ар­гу­мен­та

4)  40

5)   ко­рень из: на­ча­ло ар­гу­мен­та: 41 конец ар­гу­мен­та

6)  2 ко­рень из: на­ча­ло ар­гу­мен­та: 41 конец ар­гу­мен­та

 

Ответ за­пи­ши­те в виде со­че­та­ния букв и цифр, со­блю­дая ал­фа­вит­ную по­сле­до­ва­тель­ность букв ле­во­го столб­ца. Пом­ни­те, что не­ко­то­рые дан­ные пра­во­го столб­ца могут ис­поль­зо­вать­ся не­сколь­ко раз или не ис­поль­зо­вать­ся во­об­ще. На­при­мер: А1Б1В4.

Вы­бе­ри­те три вер­ных утвер­жде­ния:

1)  если  ко­си­нус левая круг­лая скоб­ка арк­ко­си­нус a пра­вая круг­лая скоб­ка = ко­си­нус левая круг­лая скоб­ка арк­ко­си­нус дробь: чис­ли­тель: 1, зна­ме­на­тель: 18 конец дроби пра­вая круг­лая скоб­ка , то a= дробь: чис­ли­тель: 1, зна­ме­на­тель: 18 конец дроби ;

2)  если  ко­си­нус альфа = минус ко­си­нус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 18 конец дроби , то  арк­ко­си­нус левая круг­лая скоб­ка ко­си­нус альфа пра­вая круг­лая скоб­ка = минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 18 конец дроби ;

3)  если  синус альфа = синус дробь: чис­ли­тель: 17 Пи , зна­ме­на­тель: 18 конец дроби , то  арк­си­нус левая круг­лая скоб­ка синус альфа пра­вая круг­лая скоб­ка = дробь: чис­ли­тель: 17 Пи , зна­ме­на­тель: 18 конец дроби ;

4)  если  арк­ко­си­нус a= дробь: чис­ли­тель: Пи , зна­ме­на­тель: 18 конец дроби , то a= ко­си­нус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 18 конец дроби ;

5)  если  синус альфа = синус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 18 конец дроби , то  альфа = минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 18 конец дроби ;

6)  если  синус альфа = синус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 18 конец дроби , то  арк­си­нус левая круг­лая скоб­ка синус альфа пра­вая круг­лая скоб­ка = дробь: чис­ли­тель: Пи , зна­ме­на­тель: 18 конец дроби .

 

Ответ за­пи­ши­те циф­ра­ми (по­ря­док за­пи­си цифр не имеет зна­че­ния). На­при­мер: 123.

16.  
i

Най­ди­те сумму кор­ней урав­не­ния  левая круг­лая скоб­ка x минус 32 пра­вая круг­лая скоб­ка умно­жить на левая круг­лая скоб­ка 4 в сте­пе­ни x плюс 7 умно­жить на 2 в сте­пе­ни левая круг­лая скоб­ка x плюс 1 пра­вая круг­лая скоб­ка минус 32 пра­вая круг­лая скоб­ка =0.

17.  
i

Най­ди­те зна­че­ние вы­ра­же­ния

 левая круг­лая скоб­ка дробь: чис­ли­тель: a в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 6 конец дроби пра­вая круг­лая скоб­ка плюс b в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 6 конец дроби пра­вая круг­лая скоб­ка , зна­ме­на­тель: 2 в сте­пе­ни левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка конец дроби пра­вая круг­лая скоб­ка : левая круг­лая скоб­ка дробь: чис­ли­тель: b, зна­ме­на­тель: a в сте­пе­ни д робь: чис­ли­тель: 5, зна­ме­на­тель: 6 конец дроби конец дроби } плюс дробь: чис­ли­тель: b в сте­пе­ни д робь: чис­ли­тель: 7, зна­ме­на­тель: 6 конец дроби , зна­ме­на­тель: a конец дроби пра­вая круг­лая скоб­ка ,

если a  =  75 и b  =  10.

18.  
i

Най­ди­те пе­ри­метр пра­виль­но­го ше­сти­уголь­ни­ка, мень­шая диа­го­наль ко­то­ро­го равна 4 ко­рень из 3 .

19.  
i

Ре­ши­те урав­не­ние x в квад­ра­те минус 6x плюс 5= дробь: чис­ли­тель: 28, зна­ме­на­тель: x в квад­ра­те минус 12x плюс 32 конец дроби и най­ди­те сумму его кор­ней.

Най­ди­те пло­щадь бо­ко­вой по­верх­но­сти пра­виль­ной тре­уголь­ной пи­ра­ми­ды, если длина бис­сек­три­сы ее ос­но­ва­ния равна 4 ко­рень из 3 и плос­кий угол при вер­ши­не 2 арк­тан­генс дробь: чис­ли­тель: 4, зна­ме­на­тель: 5 конец дроби .

21.  
i

Най­ди­те сумму наи­мень­ше­го и наи­боль­ше­го целых ре­ше­ний не­ра­вен­ства  ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 0,3 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x плюс 71 пра­вая круг­лая скоб­ка мень­ше или равно 2 ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 0,3 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x минус 1 пра­вая круг­лая скоб­ка .

22.  
i

Через элек­трон­ный сер­вис Маша ку­пи­ла билет на кон­церт и за­пла­ти­ла 72 руб. В эту сумму вхо­дит сто­и­мость би­ле­та и сер­вис­ный сбор 4 руб. За не­де­лю до кон­цер­та Маша ре­ши­ла вер­нуть билет. По пра­ви­лам ор­га­ни­за­то­ра кон­цер­та ей вер­нут не менее 75% сто­и­мо­сти би­ле­та. Какую наи­боль­шую сумму (в руб­лях) может по­те­рять Маша, вер­нув билет?

23.  
i

Най­ди­те про­из­ве­де­ние точек ми­ни­му­ма функ­ции  f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = дробь: чис­ли­тель: x в сте­пе­ни 4 , зна­ме­на­тель: 4 конец дроби плюс x в кубе минус 14 x в квад­ра­те .

24.  
i

Най­ди­те про­из­ве­де­ние кор­ней (ко­рень, если он един­ствен­ный) урав­не­ния  левая круг­лая скоб­ка x плюс 1 пра­вая круг­лая скоб­ка ко­рень из: на­ча­ло ар­гу­мен­та: x в квад­ра­те плюс 3x минус 2 конец ар­гу­мен­та = левая круг­лая скоб­ка x плюс 1 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка 10 минус 2x пра­вая круг­лая скоб­ка .

26.  
i

ABCA1B1C1  — пра­виль­ная тре­уголь­ная приз­ма, все ребра ко­то­рой равны 3. Точки P и K  — се­ре­ди­ны ребер BC и CC1 со­от­вет­ствен­но, M ∈ AA1, AM : AA1  =  1 : 3 (см. рис.). Най­ди­те уве­ли­чен­ный в 25 раз квад­рат длины от­рез­ка, по ко­то­ро­му плос­кость, про­хо­дя­щая через точки M, K, P, пе­ре­се­ка­ет грань AA1B1B.

27.  
i

Най­ди­те (в гра­ду­сах) сумму раз­лич­ных кор­ней урав­не­ния  синус в квад­ра­те дробь: чис­ли­тель: 9 x, зна­ме­на­тель: 4 конец дроби минус ко­си­нус в квад­ра­те дробь: чис­ли­тель: 9 x, зна­ме­на­тель: 4 конец дроби =1 на про­ме­жут­ке [−235°; −35°].

28.  
i

Най­ди­те все пары (m, n) целых чисел, ко­то­рые свя­за­ны со­от­но­ше­ни­ем m2 + 4m  =  n2 − 2n + 8. Пусть k  — ко­ли­че­ство таких пар, m0  — наи­мень­шее из зна­че­ний m, тогда зна­че­ние вы­ра­же­ния k · m0 равно ... .

29.  
i

Най­ди­те про­из­ве­де­ние кор­ней урав­не­ния x минус ко­рень из: на­ча­ло ар­гу­мен­та: x в квад­ра­те минус 36 конец ар­гу­мен­та = дробь: чис­ли­тель: левая круг­лая скоб­ка x минус 6 пра­вая круг­лая скоб­ка в квад­ра­те , зна­ме­на­тель: 2x плюс 12 конец дроби .

30.  
i

Рав­но­бед­рен­ная тра­пе­ция с ос­но­ва­ни­я­ми дли­ной 7 и 3 и ост­рым углом 60° вра­ща­ет­ся во­круг пря­мой, со­дер­жа­щей ее бо­ко­вую сто­ро­ну. Най­ди­те объем тела вра­ще­ния V и в ответ за­пи­ши­те зна­че­ние вы­ра­же­ния  дробь: чис­ли­тель: V, зна­ме­на­тель: Пи конец дроби .